Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320019

ABSTRACT

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cats , Animals , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Viral , United Kingdom/epidemiology
2.
Viruses ; 15(3)2023 03 11.
Article in English | MEDLINE | ID: covidwho-2267383

ABSTRACT

A higher prevalence of SARS-CoV-2 infections in animals that have close contact with SARS-CoV-2-positive humans ("COVID-19 households") has been demonstrated in several countries. This prospective study aimed to determine the SARS-CoV-2 prevalence in animals from Swiss COVID-19 households and to assess the potential risk factors for infection. The study included 226 companion animals (172 cats, 76.1%; 49 dogs, 21.7%; and 5 other animals, 2.2%) from 122 COVID-19 households with 336 human household members (including 230 SARS-CoV-2-positive people). The animals were tested for viral RNA using an RT-qPCR and/or serologically for antibodies and neutralizing activity. Additionally, surface samples from animal fur and beds underwent an RT-qPCR. A questionnaire about hygiene, animal hygiene, and contact intensity was completed by the household members. A total of 49 of the 226 animals (21.7%) from 31 of the 122 households (25.4%) tested positive/questionably positive for SARS-CoV-2, including 37 of the 172 cats (21.5%) and 12 of the 49 dogs (24.5%). The surface samples tested positive significantly more often in households with SARS-CoV-2-positive animals than in households with SARS-CoV-2-negative animals (p = 0.011). Significantly more animals tested positive in the multivariable analysis for households with minors. For cats, a shorter length of outdoor access and a higher frequency of removing droppings from litterboxes were factors that were significantly associated with higher infection rates. The study emphasizes that the behavior of owners and the living conditions of animals can influence the likelihood of a SARS-CoV-2 infection in companion animals. Therefore, it is crucial to monitor the infection transmission and dynamics in animals, as well as to identify the possible risk factors for animals in infected households.


Subject(s)
COVID-19 , Humans , Animals , Dogs , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Prospective Studies , Family Characteristics , Risk Factors
3.
Viruses ; 15(1)2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2200885

ABSTRACT

In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Dogs , Humans , COVID-19/veterinary , Immunity , Pangolins , Pets , SARS-CoV-2/genetics , Switzerland/epidemiology , Cats
4.
Viruses ; 14(8)2022 08 04.
Article in English | MEDLINE | ID: covidwho-2024282

ABSTRACT

The rapid transmission of measles poses a great challenge for measles elimination. Thus, rapid testing is required to screen the health status in the population during measles outbreaks. A pseudotype-based virus neutralisation assay was used to measure neutralising antibody titres in serum samples collected from healthcare workers in Sheffield during the measles outbreak in 2016. Vesicular stomatitis virus (VSV) pseudotypes bearing the haemagglutinin and fusion glycoproteins of measles virus (MeV) and carrying a luciferase marker gene were prepared; the neutralising antibody titre was defined as the dilution resulting in 90% reduction in luciferase activity. Spearman's correlation coefficients between IgG titres and neutralising antibody levels ranged from 0.40 to 0.55 (p < 0.05) or from 0.71 to 0.79 (p < 0.0001) when the IgG titres were obtained using different testing kits. In addition, the currently used vaccine was observed to cross-neutralise most circulating MeV genotypes. However, the percentage of individuals being "well-protected" was lower than 95%, the target rate of vaccination coverage to eliminate measles. These results demonstrate that the level of clinical protection against measles in individuals could be inferred by IgG titre, as long as a precise correlation has been established between IgG testing and neutralisation assay; moreover, maintaining a high vaccination coverage rate is still necessary for measles elimination.


Subject(s)
Antibodies, Neutralizing , Measles , Antibodies, Viral , Disease Outbreaks/prevention & control , Health Personnel , Humans , Immunoglobulin G , Luciferases , Measles/epidemiology , Measles/prevention & control , Measles Vaccine , Vaccination
5.
Viruses ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: covidwho-1875800

ABSTRACT

Immunocompromise is a common condition in cats, especially due to widespread infections with immunosuppressive viruses, such as feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), but also due to chronic non-infectious diseases, such as tumours, diabetes mellitus, and chronic kidney disease, as well as treatment with immunosuppressive drugs, such as glucocorticoids, cyclosporins, or tumour chemotherapy. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from eleven European countries, discusses the current knowledge and rationale for vaccination of immunocompromised cats. So far, there are few data available on vaccination of immunocompromised cats, and sometimes studies produce controversial results. Thus, this guideline summarizes the available scientific studies and fills in the gaps with expert opinion, where scientific studies are missing. Ultimately, this review aims to help veterinarians with their decision-making in how best to vaccinate immunocompromised cats.


Subject(s)
Immunodeficiency Virus, Feline , Leukemia Virus, Feline , Animals , Cats , Europe , Vaccination/veterinary
6.
Vet Rec ; 188(8): e247, 2021 04.
Article in English | MEDLINE | ID: covidwho-1198417

ABSTRACT

OBJECTIVES: The aim of the study was to find evidence of SARS-CoV-2 infection in UK cats. DESIGN: Tissue samples were tested for SARS-CoV-2 antigen using immunofluorescence and for viral RNA by in situ hybridisation. A set of 387 oropharyngeal swabs that had been submitted for routine respiratory pathogen testing was tested for SARS-CoV-2 RNA using reverse transcriptase quantitative PCR. RESULTS: Lung tissue collected post-mortem from cat 1 tested positive for both SARS-CoV-2 nucleocapsid antigen and RNA. SARS-CoV-2 RNA was detected in an oropharyngeal swab collected from cat 2 that presented with rhinitis and conjunctivitis. High throughput sequencing of the viral genome revealed five single nucleotide polymorphisms (SNPs) compared to the nearest UK human SARS-CoV-2 sequence, and this human virus contained eight SNPs compared to the original Wuhan-Hu-1 reference sequence. An analysis of the viral genome of cat 2 together with nine other feline-derived SARS-CoV-2 sequences from around the world revealed no shared cat-specific mutations. CONCLUSIONS: These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in the UK, with the infected cats developing mild or severe respiratory disease. Given the ability of the new coronavirus to infect different species, it will be important to monitor for human-to-cat, cat-to-cat and cat-to-human transmission.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Lung/virology , SARS-CoV-2/isolation & purification , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , Cats , Female , Humans , RNA, Viral , SARS-CoV-2/genetics , United Kingdom/epidemiology
7.
Viruses ; 13(2)2021 01 26.
Article in English | MEDLINE | ID: covidwho-1050648

ABSTRACT

COVID-19 is a severe acute respiratory syndrome (SARS) caused by a new coronavirus (CoV), SARS-CoV-2, which is closely related to SARS-CoV that jumped the animal-human species barrier and caused a disease outbreak in 2003. SARS-CoV-2 is a betacoronavirus that was first described in 2019, unrelated to the commonly occurring feline coronavirus (FCoV) that is an alphacoronavirus associated with feline infectious peritonitis (FIP). SARS-CoV-2 is highly contagious and has spread globally within a few months, resulting in the current pandemic. Felids have been shown to be susceptible to SARS-CoV-2 infection. Particularly in the Western world, many people live in very close contact with their pet cats, and natural infections of cats in COVID-19-positive households have been described in several countries. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European Countries, discusses the current status of SARS-CoV infections in cats. The review examines the host range of SARS-CoV-2 and human-to-animal transmissions, including infections in domestic and non-domestic felids, as well as mink-to-human/-cat transmission. It summarises current data on SARS-CoV-2 prevalence in domestic cats and the results of experimental infections of cats and provides expert opinions on the clinical relevance and prevention of SARS-CoV-2 infection in cats.


Subject(s)
COVID-19/transmission , COVID-19/veterinary , Cats/virology , Animals , COVID-19/epidemiology , COVID-19/virology , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus/pathogenicity , Host Specificity , Humans , Mink/virology , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Zoonoses/epidemiology , Zoonoses/prevention & control , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL